Abstract

We propose a power penalty method for an obstacle problem arising from the discretization of an infinite-dimensional optimization problem involving differential operators in both its objective function and constraints. In this method we approximate the mixed nonlinear complementarity problem (NCP) arising from the KKT conditions of the discretized problem by a nonlinear penalty equation. We then show the solution to the penalty equation converges exponentially to that of the mixed NCP. Numerical results will be presented to demonstrate the theoretical convergence rates of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.