Abstract
We propose a penalty method for a finite-dimensional nonlinear complementarity problem (NCP) arising from the discretization of the infinite-dimensional free boundary/obstacle problem governing the valuation of American options under transaction costs. In this method, the NCP is approximated by a system of nonlinear equations containing a power penalty term. We show that the mapping involved in the system is continuous and strongly monotone. Thus, the unique solvability of both the NCP and the penalty equation and the exponential convergence of the solution to the penalty equation to that of the NCP are guaranteed by an existing theory. Numerical results will be presented to demonstrate the convergence rates and usefulness of this penalty method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.