Abstract

Missing data rates could depend on the targeted values in many settings, including mass spectrometry-based proteomic profiling studies. Here, we consider mean and covariance estimation under a multivariate Gaussian distribution with non-ignorable missingness, including scenarios in which the dimension (p) of the response vector is equal to or greater than the number (n) of independent observations. A parameter estimation procedure is developed by maximizing a class of penalized likelihood functions that entails explicit modeling of missing data probabilities. The performance of the resulting "penalized EM algorithm incorporating missing data mechanism (PEMM)" estimation procedure is evaluated in simulation studies and in a proteomic data illustration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.