Abstract

In this study, methoxypolyethylene glycol acrylate (mPEGA) served as a PEGylated monomer and was grafted onto polyvinylidene fluoride (PVDF) through homogeneous solution gamma irradiation. The grafting process was confirmed using several techniques, including infrared spectroscopy (FTIR), thermodynamic stability assessments, and rotational viscosity measurements. The degree of grafting (DG) was determined via the gravimetric method. By varying the monomer concentration, a range of DGs was achieved in the PVDF-g-mPEGA copolymers. Investigations into water contact angles and scanning electron microscopy (SEM) images indicated a direct correlation between increased hydrophilicity, membrane porosity, and higher DG levels in the PVDF-g-mPEGA membrane. Filtration tests demonstrated that enhanced DGs resulted in more permeable PVDF-g-mPEGA membranes, eliminating the need for pore-forming agents. Antifouling tests revealed that membranes with a lower DG maintained a high flux recovery rate, indicating that the innate properties of PVDF could be largely preserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.