Abstract

Poly(vinylidene fluoride) (PVDF) membrane was pre-irradiated by electron beam, and then poly(ethylene glycol) methyl ether methacrylate (PEGMA) was grafted onto the membrane surface in the aqueous solution. The degree of grafting was significantly influenced by the pH value of the reaction solution. The surface chemical changes were characterized by the Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS). Combining with the analysis of the nuclear magnetic resonance proton and carbon spectra ( 1H NMR and 13C NMR), PEGMA was mainly grafted onto the membrane surface. Morphological changes were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The porosity and bulk mean pore size changes were determined by a mercury porosimeter. The surface and bulk hydrophilicity were evaluated on the basis of static water contact angle, dynamic water contact angle and the dynamic adsorption process. Furthermore, relative high permeation fluxes of pure water and protein solution were obtained. All these results demonstrate that both hydrophilicity and fouling resistance of the PVDF membrane can be improved by the immobilization of hydrophilic comb-like polymer brushes on the membrane surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call