Abstract
In this article, a PDMS microfluidic immunosensor integrated with specific antibody immobilized alumina nanoporous membrane was developed for rapid detection of foodborne pathogens Escherichia coli O157:H7 and S taphylococcus aureus with electrochemical impedance spectrum. Firstly, antibodies to the targeted bacteria were covalently immobilized on the nanoporous alumina membranes via self assembled (3-glycidoxypropyl)trimethoxysilane (GPMS) silane. Then, the impedance spectrum was recorded for bacteria detection ranging from 1 Hz to 100 kHz. The maximum impedance amplitude change for these two food pathogens was around 100 Hz. This microfluidic immunosensor based on nanoporous membrane impedance spectrum could achieve rapid bacteria detection within 2 h with a high sensitivity of 10 2 CFU/ml. Cross-bacteria experiments for E. coli O157:H7 and S. aureus were also explored to testify the specificity. The results showed that impedance amplitude at 100 Hz had a significant reduction in binding of bacteria when the membrane was exposed to non-specific bacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.