Abstract

Molecular assembly has become a promising strategy for designing new polydentate ligands. But very often such ligands and their complexes are sparingly soluble in aqueous phase due to their intrinsic hydrophobic character. Pd(II) complexes are good homogeneous catalysts but their poor solubility in aqueous phase may limit their catalytic efficacy in the universal green solvent water. However, solubility related challenges especially in aqueous phase can be mitigated through the formation of inclusion complexes by exploiting the hydrophobic nature of the β-cyclodextrin (β-CD) cavity. Hence, an ionic liquid ChCD (1) was synthesized from β-CD and Choline bromide (ChBr). Next a supramolecular N, N′, O-tridentate ligand 1⊂2 (3) was synthesized by the inclusion of 2,6-diaminopyridine (2) in the hydrophobic β-CD cavity of the ionic liquid ChCD (1) and was well characterized by elemental analysis, UV-visible, FTIR, 1H NMR spectroscopy, etc. The stoichiometry of the inclusion complex 1⊂2 (3) was found to be 1:1 based on UV-visible spectrophotometric study. A new air stable, highly water soluble Pd2+-complex [κ3-N, N′, O-Pd(1⊂2)H2O]OAc (4) was then synthesized from the supramolecular ligand (3) with 1:1 stoichiometry and used as a catalyst for Suzuki cross-coupling reactions in water at ambient temperature with good to excellent yields. The catalyst can be removed and recycled. Additionally, the use of non-toxic solvent water makes the methodology green, sustainable, and economically viable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call