Abstract
This paper presents the concept of and a design method for a new variable-radius pulley that passively changes the effective radius of a driven pulley in a belt-driven transmission in response to a changing load torque. The proposed mechanism is based on the principle that the effective radius of the pulley is passively increased when a torque is applied to the pulley by means of a cam element and an elastic element. In a belt-driven transmission, the radial size of the driven pulley determines the relationship between the output torque and the output speed. Whereas a belt-driven transmission with a typical pulley of constant radius has a fixed maximum speed and torque, a variable-radius pulley allows the maximum speed and torque to vary, enabling more efficient driving. This paper describes the working principle of the new variable-radius pulley and presents a static analysis of the proposed mechanism. Simulations and experiments conducted to demonstrate the proposed mechanism are reported, and the results show that the proposed variable-radius pulley can be used to vary the transmission ratio in accordance with the torque applied to the robot joint.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have