Abstract
A new test method has been developed to estimate the required release rate of hydrogen peroxide (H2O2) to prevent marine biofouling. The technique exploits a well-defined concentration gradient of biocide across a cellulose acetate membrane. A controlled flux of H2O2, an environmentally friendly biocide, was obtained. Larvae of the barnacle, Balanus improvisus, were subjected to known release rates of H2O2 from a surface, under laboratory conditions. It was found that the distribution of settled larvae was not significantly different from the controls when H2O2 fluxes of 5–8 μg cm−2 day−1 were applied. However, release rates of 40 μg cm−2 day−1 significantly displaced the distribution of settled larvae towards the area of the chamber farthest away from the membrane. Membrane tests in seawater (Jyllinge Harbour, Denmark) for over 16 weeks showed that release rates of H2O2 of approximately 2800 μg cm−2 day−1 deterred biofouling efficiently. A H2O2 release rate of about 224 μg cm−2 day−1 resulted in some slime formation, but it was less than that on the H2O2-free control. It appears that to obtain efficient resistance to biofouling in natural seawater requires much higher membrane release rates of H2O2 (factor of between 5 and 50) than laboratory membrane exposure assays using barnacle larvae.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have