Abstract
An interesting new partitioning and bounded variable algorithm (PBVA) is proposed for solving linear programming problems. The PBVA is a variant of the simplex algorithm which uses a modified form of the simplex method followed by the dual simplex method for bounded variables. In contrast to the two-phase method and the big M method, the PBVA does not introduce artificial variables. In the PBVA, a reduced linear program is formed by eliminating as many variables as there are equality constraints. A subproblem containing one ‘less than or equal to’ constraint is solved by executing the simplex method modified such that an upper bound is placed on an unbounded entering variable. The remaining constraints of the reduced problem are added to the optimal tableau of the subproblem to form an augmented tableau, which is solved by applying the dual simplex method for bounded variables. Lastly, the variables that were eliminated are restored by substitution. Differences between the PBVA and two other variants of the simplex method are identified. The PBVA is applied to solve an example problem with five decision variables, two equality constraints, and two inequality constraints. In addition, three other types of linear programming problems are solved to justify the advantages of the PBVA.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have