Abstract
Sequential data assimilation methods, such as the ensemble Kalman filter (EnKF), provide a general framework to account for various uncertainties in hydrologic modeling, simultaneously estimating dynamic states and model parameters with a state augmentation technique. But this technique suffers from spurious correlation for impulse responses, such as the rainfall‐runoff process, especially in the case of high‐dimensional state spaces containing various parameters. This paper presents a partitioned forecast‐update scheme based on the EnKF to reduce the degree of freedom of the high‐dimensional state space and to correctly capture covariances between states and parameters. In this update scheme, the parameter set is partitioned into several types according to their sensitivities, and each type of sensitive parameter is estimated in an individual loop by repeated forecast and assimilation. We test this scheme with a synthetic case and a distributed hydrologic model concerning the real case of the Zhanghe river basin in China. The results from the synthetic experiments show that this new scheme can retrieve optimal parameter values and represent the correlations in a more stable manner when compared with the standard state augmentation technique. The real case further demonstrates the robustness of the partitioned update scheme for state and parameter estimation owing to the low estimation errors of streamflow in the assimilation and the prediction periods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.