Abstract
This article presents a particle swarm optimizer (PSO) capable of handling constrained multi-objective optimization problems. The latter occur frequently in engineering design, especially when cost and performance are simultaneously optimized. The proposed algorithm combines the swarm intelligence fundamentals with elements from bio-inspired algorithms. A distinctive feature of the algorithm is the utilization of an arithmetic recombination operator, which allows interaction between non-dominated particles. Furthermore, there is no utilization of an external archive to store optimal solutions. The PSO algorithm is applied to multi-objective optimization benchmark problems and also to constrained multi-objective engineering design problems. The algorithmic effectiveness is demonstrated through comparisons of the PSO results with those obtained from other evolutionary optimization algorithms. The proposed particle swarm optimizer was able to perform in a very satisfactory manner in problems with multiple constraints and/or high dimensionality. Promising results were also obtained for a multi-objective engineering design problem with mixed variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.