Abstract

Abstract In this paper, an effective ∊-constraint heat transfer search (∊-HTS) algorithm for the multi-objective engineering design problems is presented. This algorithm is developed to solve multi-objective optimization problems by evaluating a set of single objective sub-problems. The effectiveness of the proposed algorithm is checked by implementing it on multi-objective benchmark problems that have various characteristics of Pareto front such as discrete, convex, and non-convex. This algorithm is also tested for several distinctive multi-objective engineering design problems, such as four bar truss problem, gear train problem, multi-plate disc brake design, speed reducer problem, welded beam design, and spring design problem. Moreover, the numerical experimentation shows that the proposed algorithm generates the solution to represent true Pareto front. Highlights A novel multi-objective optimization (MOO) algorithm is proposed. Proposed algorithm is presented to obtain the Pareto-optimal solutions. The multi-objective optimization algorithm compared with other work in the literature. Test performance of proposed algorithm on MOO benchmark/design engineering problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call