Abstract
Detecting protein complexes is critical for studying cellular organizations and functions. The accumulation of protein–protein interaction (PPI) data enables the identification of protein complexes computationally. Although a great number of computational methods have been proposed to identify protein complexes from PPI networks, most of them ignore the signs of PPIs that reflect the ways proteins interact (activation or inhibition). As not all PPIs imply co-complex relationships, taking into account the signs of PPIs can benefit the identification of protein complexes. Moreover, PPI networks are not static, but vary with the change of cell states or environments. However, existing methods are primarily designed for single-network clustering, and rarely consider joint clustering of multiple PPI networks. In this study, we propose a novel partially shared signed network clustering (PS-SNC) model for identifying protein complexes from multiple state-specific signed PPI networks jointly. PS-SNC can not only consider the signs of PPIs, but also identify the common and unique protein complexes in different states. Experimental results on synthetic and real datasets show that our PS-SNC model can achieve better performance than other state-of-the-art protein complex detection methods. Extensive analysis on real datasets demonstrate the effectiveness of PS-SNC in revealing novel insights about the underlying patterns of different cell lines.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.