Abstract
We derive a closed-form solution to the plane strain problem of a partially debonded rigid elliptical inclusion in which the debonded portion is filled with a liquid slit inclusion when the infinite isotropic elastic matrix is subjected to uniform remote in-plane stresses. The original boundary value problem is reduced to a Riemann–Hilbert problem with discontinuous coefficients, and its analytical solution is derived. By imposing the incompressibility condition of the liquid slit inclusion and balance of moment on a circular disk of infinite radius, we obtain a set of two coupled linear algebraic equations for the two unknowns characterizing the internal uniform hydrostatic tension within the liquid slit inclusion and the rigid body rotation of the rigid elliptical inclusion. As a result, these two unknowns can be uniquely determined revealing the elastic field in the matrix.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have