Abstract
<div>In this study, a parametric thoracic spine (T-spine) model was developed to account for morphological variations among the adult population. A total of 84 CT scans were collected, and the subjects were evenly distributed among age groups and both sexes. CT segmentation, landmarking, and mesh morphing were performed to map a template mesh onto the T-spine vertebrae for each sampled subject. Generalized procrustes analysis (GPA), principal component analysis (PCA), and linear regression analysis were then performed to investigate the morphological variations and develop prediction models. A total of 13 statistical models, including 12 T-spine vertebrae and a spinal curvature model, were combined to predict a full T-spine 3D geometry with any combination of age, sex, stature, and body mass index (BMI). A leave-one-out root mean square error (RMSE) analysis was conducted for each node of the mesh predicted by the statistical model for every T-spine vertebra. Most of the RMSEs were less than 2 mm across the 12 vertebral levels, indicating good accuracy. The presented parametric T-spine model can serve as a geometry basis for parametric human modeling or future crash test dummy designs to better assess T-spine injuries accounting for human diversity.</div>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: SAE International Journal of Transportation Safety
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.