Abstract

Viscoelastic materials are mostly used to passively suppress structural vibrations. The theoretical analysis and design of such system require the knowledge of damping properties which are highly frequency-dependent and proper mathematical models for this dependency. The fractional derivative model is attractive as very few empirical parameters are required. These parameters can be identified through inverse procedures, either by fitting the frequency dependent constitutive properties from a dedicated dynamical mechanical analyzer experiment, or by fitting response curves, e.g. frequency response functions (FRFs) by using a dedicated numerical model. The optimization process requires frequently iterative prediction of the FRFs of large-scale full order model and furthermore each model inversion is expensive. To speed up numerical simulations, a parametric model order reduction technique is introduced. In the material parameter search space, quasi-random sequences are chosen and divided into two disjoint sets: a sample set is used to construct a reduced order model (ROM); while a validation set is used to assess its performance. A global orthonormal basis can then be constructed by non-weighted singular value decomposition on all local bases. Since the parameter- and frequency-dependency can be suitably preserved, the generated single ROM in conjunction with optimization algorithms is very useful to identify the material parameters of viscoelastic damping. The versatility and efficiency of the present procedure are demonstrated through a number of validation cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.