Abstract
Choosing the right parameterization to describe a transversely isotropic medium with a vertical symmetry axis (VTI) allows us to match the scattering potential of these parameters to the available data in a way that avoids a potential tradeoff and focuses on the parameters to which the data are sensitive. For 2D elastic full-waveform inversion in VTI media of pressure components and for data with a reasonable range of offsets (as with those found in conventional streamer data acquisition systems), assuming that we have a kinematically accurate normal moveout velocity ([Formula: see text]) and anellipticity parameter [Formula: see text] (or horizontal velocity [Formula: see text]) obtained from tomographic methods, a parameterization in terms of horizontal velocity [Formula: see text], [Formula: see text], and [Formula: see text] is preferred to the more conventional parameterization in terms of [Formula: see text], [Formula: see text], and [Formula: see text]. In the [Formula: see text], [Formula: see text], and [Formula: see text] parameterization and for reasonable scattering angles (<[Formula: see text]), [Formula: see text] acts as a “garbage collector” and absorbs most of the amplitude discrepancies between the modeled and observed data, more so when density [Formula: see text] and S-wave velocity [Formula: see text] are not inverted for (a standard practice with streamer data). On the contrary, in the [Formula: see text], [Formula: see text], and [Formula: see text] parameterization, [Formula: see text] is mostly sensitive to large scattering angles, leaving [Formula: see text] exposed to strong leakages from [Formula: see text] mainly. These assertions will be demonstrated on the synthetic Marmousi II as well as a North Sea ocean bottom cable data set, in which inverting for the horizontal velocity rather than the vertical velocity yields more accurate models and migrated images.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have