Abstract

Abstract In this study, we introduce a parameterization scheme for slantwise convection (SC) to be considered for models that are too coarse to resolve slantwise convection explicitly (with a horizontal grid spacing coarser than 15 km or less). This SC scheme operates in a locally defined 2D cross section perpendicular to the deep-layer-averaged thermal wind. It applies momentum tendency to adjust the environment toward slantwise neutrality with a prescribed adjustment time scale. Condensational heating and the associated moisture loss are also considered. To evaluate the added value of the SC scheme, we implement it in the Weather Research and Forecasting (WRF) Model to supplement the existing cumulus parameterization schemes for upright convection and test for two different numerical setups: a 2D idealized, unforced release of conditional symmetric instability (CSI) in an initially conditionally stable environment, and a 3D real-data precipitation event containing both CSI and conditional instability along the cold front of a cyclonic storm near the United Kingdom. Both test cases show significant improvements for the coarse-gridded (40-km) simulations when parameterizing slantwise convection. Compared to the 40-km simulations with only the upright convection scheme, the counterparts with the additional SC scheme exhibit a larger extent of CSI neutralization, generate a stronger grid-resolved slantwise circulation, and produce greater amounts of precipitation, all in better agreement with the corresponding fine-gridded reference simulations. Given the importance of slantwise convection in midlatitude weather systems, our results suggest that there exist potential benefits of parameterizing slantwise convection in general circulation models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.