Abstract

An equatorial β-plane model of the tropical stratosphere is used to examine the effects of ozone on Kelvin, Rossby–gravity, equatorial Rossby, inertia–gravity, and smaller-scale gravity waves. The model is composed of coupled equations for wind, temperature, and ozone volume mixing ratio, which are linearized about a zonally averaged background state. Using the Wentzel–Kramers–Brillouin (WKB) formalism, equations are obtained for the vertical spatial scale, spatial damping rate, and amplitude of the waves. These equations yield an analytical expression for the ozone-modified wave driving of the zonal-mean circulation. The expression for the wave driving provides an efficient parameterization that can be implemented into models that are unable to spontaneously generate the ozone-modified, convectively coupled waves that drive the quasi-biennial and semiannual oscillations of the tropical stratosphere. The effects of ozone on the wave driving, which are strongly modulated by the Doppler-shifted frequency, are maximized in the upper stratosphere, where ozone photochemistry and vertical ozone advection combine to augment Newtonian cooling. The ozone causes a contraction in spatial scale and an increase in the spatial damping rate. In the midstratosphere to lower mesosphere, the ozone-induced increase in wave driving is about 10%–30% for all wave types, but it can be as large as about 80% over narrow altitude regions and for specific wave types. In the dynamically controlled lower stratosphere, vertical ozone advection dominates over meridional ozone advection and opposes Newtonian cooling, causing, on average, a 10%–15% reduction in the damping rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.