Abstract

Molecular motors convert chemical potential energy into mechanical work and perform a great number of critical biological functions. Examples include the polymerization and manipulation of nucleic acids, the generation of cellular motility and contractility, the formation and maintenance of cell shape, and the transport of materials within cells. The mechanisms underlying these molecular machines are routinely divided into two categories: Brownian ratchet and power stroke. While a ratchet uses chemical energy to bias thermally activated motion, a stroke depends on a direct coupling between chemical events and motion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call