Abstract

The convergence of Monte Carlo methods for numerical integration can often be improved by replacing pseudorandom numbers (PRNs) with more uniformly distributed numbers known as quasirandom numbers (QRNs). In this paper the convergence of a Monte Carlo method for evaluating the extremal eigenvalues of a given matrix is studied when quasirandom sequences are used. An error bound is established and numerical experiments with large sparse matrices are performed using three different QRN sequences: Sobol', Halton and Faure. The results indicate: • An improvement in both the magnitude of the error and in the convergence rate that can be achieved when using QRNs in place of PRNs. • The high parallel efficiency established for Monte Carlo methods is preserved for quasi-Monte Carlo methods in this case. The execution time for computing an extremal eigenvalue of a large, sparse matrix on p processors is bounded by O(lN/p), where l is the length of the Markov chain in the stochastic process and N is the number of chains, both of which are independent of the matrix size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.