Abstract
Efficient analysis of massive on-chip power delivery networks is among the most challenging problems facing the EDA industry today. Due to Joule heating effect and the temperature dependence of resistivity, temperature is one of the most important factors that affect IR drop and must be taken into account in power grid analysis. However, the sheer size of modern power delivery networks (comprising several thousands or millions of nodes) usually forces designers to neglect thermal effects during IR drop analysis in order to simplify and accelerate simulation. As a result, the absence of accurate estimates of Joule heating effect on IR drop analysis introduces significant uncertainty in the evaluation of circuit functionality. This work presents a new approach for fast electrical-thermal co-simulation of large-scale power grids found in contemporary nanometer-scale ICs. A state-of-the-art iterative method is combined with an efficient and extremely parallel preconditioning mechanism, which enables harnessing the computational resources of massively parallel architectures, such as graphics processing units (GPUs). Experimental results demonstrate that the proposed method achieves a speedup of 66.1X for a 3.1M-node design over a state-of-the-art direct method and a speedup of 22.2X for a 20.9M-node design over a state-of-the-art iterative method when GPUs are utilized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.