Abstract

To obtain a better understanding of the trade-offs between various objectives, Bi-Objective Integer Programming (BOIP) algorithms calculate the set of all non-dominated vectors and present these as the solution to a BOIP problem. Historically, these algorithms have been compared in terms of the number of single-objective IPs solved and total CPU time taken to produce the solution to a problem. This is equitable, as researchers can often have access to widely differing amounts of computing power. However, the real world has recently seen a large uptake of multi-core processors in computers, laptops, tablets and even mobile phones. With this in mind, we look at how to best utilise parallel processing to improve the elapsed time of optimisation algorithms. We present two methods of parallelising the recursive algorithm presented by Ozlen, Burton and MacRae. Both new methods utilise two threads and improve running times. One of the new methods, the Meeting algorithm, halves running time to achieve near-perfect parallelisation. The results are compared with the efficiency of parallelisation within the commercial IP solver IBM ILOG CPLEX, and the new methods are both shown to perform better.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.