Abstract
We consider a second kind weakly singular nonlinear Volterra–Hammerstein integral equation defined by a compact operator and derive a Nyström type interpolant of the solution based on Gauss–Radau nodes. We prove the convergence of the interpolant and derive convergence estimates. For equations with nonlinearity of algebraic kind, we improve the rate of convergence by using a smoothing transformation. Some numerical examples are given.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have