Abstract

Aquatic vegetation dramatically shifts the main flow, secondary flow and turbulent structures in a meandering channel. In this study, hydrodynamics in a bending channel with a vegetation patch (VP) has been numerically studied under the variation of curvature ratios (CRs=0.5, 1.0, 1.5, 2.0) and the vegetation density i.e. Solid Volume Fractions (SVF=1.13%, 4.86%). Both effects on vegetation shear flow, helical flow, bed shear stress and bulk drag coefficients are studied in twelve cases by using Ansys Fluent package. Unsteady Reynolds Averaging Navier-Stokes (URANS) framework coupled with the Reynolds Stress turbulence Model (RSM) and Volume Of Fluid (VOF) approach is successfully applied to predict the entire flow field including multi-circulation cells as well as the free surface. The conclusions are summarized as three points. Firstly, an increase of CR moves the main circulation cell and thalweg's location towards the outer bank, while decreasing the drag coefficients in streamwise and spanwise. However, the CR weakly affects the normalised shear flow velocity profiles and dominant eddy frequencies downstream of the VP. Secondly, the trend of the dominant shedding frequency to fall with the increase of SVF that has been known only for SVF<3.4% is extended up to 10.4%. Furthermore, an opposite trend is found between the frequency and SVF for 10.4%<SVF<20%. Thirdly, a newly proposed patch dimensionless frequency number, StpSVFN, links Stp and SVF, where N is the number of stems in the patch. This number stays almost constant for each case series regardless of the variation of SVF (for SVF<10.4%). We also conclude that StpSVFN is strongly determined by the patch shape factor, mildly influenced by the patch Reynolds number, but it excludes the influence of the SVF and N. The insights from the present study unveil the complicated eco-hydro-morphic interactions among the bio-mass density, turbulent flow and channel meanders’ variation. It provides a better understanding of natural bending river systems’ development and fundamentals for the recovery of urban channel ecosystems by vegetated re-meandering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.