Abstract

Summary Vegetation plays an important role in controlling mixing and contaminant removal in wetlands. Recent studies have shown that the hydraulic performance of a wetland can be significantly affected by the presence of a main flow channel (MFC) where vegetation density is much lower than the average vegetation density in the wetland. The existence of a main flow channel induces short-circuiting, which reduces hydraulic and treatment efficiency. A numerical study was carried out to analyze the effect of channel sinuosity and vegetation density on the hydraulic performance of a channelized wetland. A rectangular wetland characterized by a meandering channel and later vegetated zones (LVZs) was considered, and numerical simulations were carried out using a 2-D depth-average hydrodynamic and solute transport model. The hydraulic performance was analyzed as a function of the average vegetation density, channel sinuosity and the ratio of vegetation densities in the LVZs and the MFC. Results show that increasing sinuosity of the main flow channel can promote mixing and improve hydraulic efficiency. Different performance metrics also indicate negligible impact of the average vegetation density on the hydraulic performance, especially when the width of the MFC is relatively large.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call