Abstract

A three-dimensional (3D) numerical model was created to simulate and analyze the effect of tool rotational speeds (RS) and plunge rate (PR) on refill friction stir spot welding (refill FSSW) of AA7075-T6 sheets. The numerical model was validated by comparing the temperatures recorded at a subset of locations with those recorded at the exact locations in prior experimental studies from the literature. The peak temperature at the weld center obtained from the numerical model differed by an error of 2.2%. The results showed that with the rise in RS, there was an increase in weld temperatures, effective strains, and time-averaged material flow velocities. With the rise in PR, the temperatures and effective strains were reduced. Material movement in the stir zone (SZ) was improved with the increment of RS. With the rise in PR, the top sheet's material flow was improved, and the bottom sheet's material flow was reduced. A deep understanding of the effect of tool RS and PR on refill FSSW joint strength were achieved by correlating the thermal cycles and material flow velocity results obtained from the numerical models to the lap shear strength (LSS) from the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call