Abstract

Refill friction stir spot welding (RFSSW) is an emerging solid-state welding technology that demonstrates an outstanding ability to join aerospace aluminum alloys. The thermomechanical processing of RFSSW may cause variations in the workpiece in the form of distortion. This study aims to establish a metrology method for sheet metal distortion with the intent to investigate the effects of RFSSW sequences on sheet metal distortion. The approach employs a robotic metrology system and the least squares method to measure and estimate the flatness of sheet metal before RFSSW and after RFSSW. The RFSSW experimentation produces five 10-spot-weld panels with five different RFSSW sequences, whereas the RFSSW sequences are based on the common practice of making sheet metal assemblies. A panel consists of two lap-welded sheets where the top sheet, a 6013-T6 aluminum alloy, is refill friction stir spot welded onto the bottom sheet, a 2029-T8 aluminum alloy. The results suggest that RFSSW sequences do have effects on sheet metal distortion. The panel with the worst distortion has a root-mean-square error of 0.8 mm as an average deviation from the ideal flatness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call