Abstract
In order to investigate effects of apex angle (α) on chemically reacting turbulent flow and thermal fields in a channel with a bluff body V-gutter flame holder, a numerical study has been carried out in this paper. With a basic geometry used in a previous experimental study, the apex angle was varied from 45° to 150°. Eddy dissipation concept (EDC) combustion model was used for air and propane premixed flame. LES-Smagorinsky model was selected for turbulence. The gird-dependent learning and numerical model verification were done. Both nonreactive and reactive conditions were analyzed and compared. The results show that asαincreases, recirculation zone becomes bigger, and Strouhal number increases a little in nonreactive cases while decreases a little in reactive cases, and the increase ofαmakes the flame shape wider, which will increase the chamber volume heat release ratio and enhance the flame stability.
Highlights
Flames can only be stabilized in high-velocity reactant streams over a certain range of conditions, while a variety of approaches are used to stabilize flames in a combustor, for example, bluff body flame holders such that V gutters are widely used in many modern combustion devices, such as augmenters or after burners in turbojet/turbofan engines and ramjet engines [1]
Eriksson [10] carried out numerical study of different RANS turbulence models efferent on rig VR-1 flame using CFD software CFX based on Zimont Turbulent Flame Closure (TFC) model, but they did not discuss LES model and vortex shedding
In order to investigate the bluff apex angle effects on flow field, 2D numerical study has been carried out using CFD software FLUENT 6.3.26 in this paper, Eddy dissipation concept (EDC) flame model which assumes that chemical reactions take place only at the dissipative scales of turbulence is used for premixed flame simulation
Summary
In order to investigate effects of apex angle (α) on chemically reacting turbulent flow and thermal fields in a channel with a bluff body V-gutter flame holder, a numerical study has been carried out in this paper. With a basic geometry used in a previous experimental study, the apex angle was varied from 45∘ to 150∘. Eddy dissipation concept (EDC) combustion model was used for air and propane premixed flame. The gird-dependent learning and numerical model verification were done. Both nonreactive and reactive conditions were analyzed and compared. The results show that as α increases, recirculation zone becomes bigger, and Strouhal number increases a little in nonreactive cases while decreases a little in reactive cases, and the increase of α makes the flame shape wider, which will increase the chamber volume heat release ratio and enhance the flame stability
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.