Abstract

During vaginal delivery, the fetal head molds into an elongated shape to adapt to the birth canal, a process known as fetal head molding. However, excessive molding can occur due to prolonged labor or strong contractions, leading to several disorders on the fetal head. This work aims to perform a numerical study on the biomechanics of fetal head molding by measuring specific diameters and the corresponding molding index. A finite element model of the pelvic floor muscles and the fetal body was used. The fetal head is composed of the skin and soft tissues, the skull with sutures and fontanelles, and the brain. The sutures and fontanelles were modeled with membrane elements and characterized by a visco-hyperelastic constitutive model adapted to a plane stress state. Simulations were performed to replicate the second stage of labor in the vertex presentation and occipito-anterior position. With the introduction of viscoelasticity to assess a time-dependent response, a prolonged second stage of labor resulted in higher molding. The pressure exerted by the birth canal and surrounding structures, along with the presence of the pelvic floor muscles, led to a percentage of molding of 9.1%. Regarding the pelvic floor muscles, a 19.4% reduction on the reaction forces and a decrease of 2.58% in muscle stretching was reported, which indicates that sufficient molding may lead to fewer injuries. The present study demonstrates the importance of focusing on the fetus injuries with non-invasive methods that can allow to anticipate complications during labor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.