Abstract
High-frequency wave propagation has many important applications in acoustics, elastodynamics, and electromagnetics. Unfortunately, the finite element discretization for these problems suffers from significant numerical pollution errors that increase with the wavenumber. It is critical to control these errors to obtain a stable and accurate method. We study the effect of pollution for very long waveguide problems in the context of robust discontinuous Petrov–Galerkin (DPG) finite element discretizations. Our numerical experiments show that the pollution primarily has a diffusive effect causing energy loss in the DPG method while phase errors appear less significant. We report results for 3D vectorial time-harmonic Maxwell problems in waveguides with more than 8000 wavelengths. Our results corroborate previous analysis for the Galerkin discretization of the Helmholtz operator by Melenk and Sauter (2011). Additionally, we discuss adaptive refinement strategies for multi-mode fiber waveguides where the propagating transverse modes must be resolved sufficiently. Our study shows the applicability of the DPG error indicator to this class of problems. Finally, we illustrate the importance of load balancing in these simulations for distributed-memory parallel computing.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have