Abstract

We present the effect of disorder on the optical conductivity of two-dimensional inhomogeneous superconductors by applying the kernel polynomial method to solve the Bogoliubov-de Gennes equations. By means of the lattice size scaling of the generalized inverse participation ratio, we find that the localization length of the quasiparticle decreases significantly with the increase of the disorder strength. Meanwhile, the weak disorder can readily restrain the Drude weight, while the superconducting gap has the tendency to suppress the low-energy optical conductivity. We also employ the Lanczos exact diagonalization method to study the competition between the on-site repulsive interactions and disorder. It is shown that the screening effect of repulsive interactions significantly enhances the Drude weight in the normal phase.

Highlights

  • The strong electron correlations are widely accepted as the key to solve the fundamentally important problems of the high-temperature superconductors [1]

  • We present the effect of disorder on the optical conductivity of two-dimensional inhomogeneous superconductors by applying the kernel polynomial method to solve the Bogoliubov-de Gennes equations

  • By means of the lattice size scaling of the generalized inverse participation ratio, we find that the localization length of the quasiparticle decreases significantly with the increase of the disorder strength

Read more

Summary

Introduction

The strong electron correlations are widely accepted as the key to solve the fundamentally important problems of the high-temperature superconductors [1]. We present the effect of disorder on the optical conductivity of two-dimensional inhomogeneous superconductors by applying the kernel polynomial method to solve the Bogoliubov-de Gennes equations. By means of the lattice size scaling of the generalized inverse participation ratio, we find that the localization length of the quasiparticle decreases significantly with the increase of the disorder strength.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.