Abstract

Owing in part to a plasma-skimming mechanism, the distribution of red blood cells (RBCs) into branches of microvascular bifurcations typically differs from the distribution of the bulk blood flow. This paper analyzes the plasma-skimming mechanism that causes phase separation due to uneven distribution of red blood cells at the inlet cross section of the parent vessel. In a previous study, the shape of the surface that divides the flow into the branches was found by numerical simulation of three-dimensional flow of a homogeneous Newtonian fluid in T-type bifurcations. Those findings are used in this study to determine, as a first approximation, the side-to-parent vessel RBC flux ratio and discharge hematocrit ratio as a function of corresponding flow ratios. Calculations are based on the assumption that RBCs move along streamlines of a homogeneous Newtonian fluid and are uniformly distributed within a concentric core at the inlet cross section of the parent vessel. The results of our calculations agree well for a wide range of flow parameters with experimental data from in vivo and in vitro studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.