Abstract

In this paper, the Lagrangian Smoothed Particle Hydrodynamics (SPH) method (with different combinations of smoothing functions/numbers of particles), the Eulerian Finite-Volume method using different refinements of the meshes and the Analytical method were applied for the study of heat diffusion. The numerical simulations by the SPH method have been performed using cubic spline, quartics and quintic spline kernels. The discretization of the domain has been affected by the use of 50 x 50, 60 x 60, 70 x 70, 80 x 80 or 90 x 90 particles. It has been noticed that the phenomenon of particle inconsistency and the consequent emergence of the largest temperature differences has been noticed, when compared with the analytical solution, near the bottom corners. The lowest differences have been obtained when the interpolation smoothing function degree and the number of particles used were the highest. For the Finite-Volume method, the largest differences between temperatures have been observed near the bottom corners, however they were lower than those found with the use of the SPH method. To obtain better results it is necessary to make boundary corrections. The computational cost of the SPH method was higher than the Finite-Volume method and increased as we increased the number of particles or the interpolation kernel degree.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.