Abstract
The performance of an idealized spherical sampler facing both vertically upwards and downwards in calm air is studied numerically. To describe the air flow around the sampler, both potential and viscous flow models have been adopted. The equations of particle motion are then solved to calculate the aspiration efficiency. The dependence of the aspiration efficiency upon the various parameters of importance in calm air sampling are investigated and compared where possible with the experimental work of Su and Vincent (2003, 2004a, b). It is found that in the case of upwards sampling the bluntness of the sampler only has a significant effect upon aspiration for large sampling velocities, values that would not generally be physically realistic. In the case of downwards sampling an important non-dimensional quantity, B 2 R C , is identified, where B represents the sampler bluntness and R C represents the gravitational effects. This quantity determines the physical conditions for which aspiration will not occur ...
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have