Abstract
Taking the approximate equations for long waves in shallow water as example, the quasi-wavelet discrete scheme is proposed for obtaining numerical solution of the (1+1) dimension nonlinear partial differential equation. In the method, the quasi-wavelet discrete scheme is adopted to discretize the spatial derivative discrete and the ordinary differential equation about time is obtained. Then the fourth order Rung-Katta method is employed to discretize the temporal derivative. Finally the quasi-wavelet solution is compared with the analytical solution, and the computations are validated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.