Abstract
Hydraulic model tests and numerical simulations show that long sinusoidal waves that are generated in very shallow waters are not stable but show modifications of the free surface as function of propagation in time and space. First, with increasing distance from the wave maker the wave becomes asymmetric and develops into a bore-shaped wave. Second, with further increasing distance more and more additional wave crests appear from the front of the bore (undular bore). The shallower the water depth, the more additional wave components can be observed. In extremely shallow water, the periodic sine waves completely disintegrate into periodic trains of solitons. At Leichtweiss-Institute for Hydraulic Engineering and Water Resources (LWI), TU Braunschweig, a nonlinear Fourier transform based on the Korteweg-deVries equation (KdV-NLFT) is implemented and successfully applied in Brühl [1] that provides an explanation for this nonlinear phenomenon and allows the prediction of the dispersion and propagation of long sinusoidal waves in shallow water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.