Abstract

The novel Covid-19 was identified in Wuhan China in December, 2019 and has created medical emergency world wise and distorted many life in the couple of month, it is being burned challenging situation for the medical scientist and virologists. Fractional order derivative based modeling is quite important to understand the real world problems and to analyse realistic situation of the proposed model. In the present investigation a fractional model based on Caputo-Fabrizio fractional derivative has been developed for the transmission of CORONA VIRUS (COVID-19) in Wuhan China. The existence and uniqueness solutions of the fractional order derivative has been investigated with the help of fixed point theory. Adamas- Bashforth numerical scheme has been used in the numerical simulation of the Caputo-Fabrizio fractional order derivative. The analysis of susceptible population, exposed population, infected population, recovered population and concentration of the virus of COVID-19 in the surrounding environment with respect to time for different values of fractional order derivative has been shown by means of graph. The comparative analysis has also been performed from classical model and fractional model along with the certified experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.