Abstract

Previous studies have explained dryline movement to be a result of vertical turbulent mixing. Such mixing was shown to efficiently erode the western edge of the shallow moist layer above sloping terrain. Two- and three-dimensional simulations have been used to demonstrate the impact of surface physiography on dryline evolution. Those simulations included changes in vegetation type, vegetation coverage, and soil moisture. In particular, dryline morphology has been shown to be dependent on the horizontal distribution of soil moisture. Modeling studies have also suggested that increases in the low-level horizontal water vapor gradient, associated with a dryline, are a result of frontogenetic forcing. The current study will extend past results by including more sensitivity experiments showing the dependence of dryline morphology on soil moisture. In this paper, the Regional Atmospheric Modeling System was used to simulate the 26 April 1991 central plains dryline. Five simulations were conducted in which only soil moisture was varied. Results suggest that the movement of the dryline and the magnitude of the low-level water vapor gradient are sensitive to changes in soil moisture. Results from the constant soil moisture case show little movement of the 9.0 g kg−1 water vapor mixing ratio isohume during the day. In that simulation the low-level horizontal gradient of water vapor displayed little change with time. Simulated dryline evolution can be viewed as a two-step process. The first is the apparent eastward movement of drier air due to turbulent erosion of the shallow moist layer. The second step is the relatively rapid increase of the low-level horizontal gradient of water vapor. The increase of the gradient was found to be in response to vertically oriented thermally driven solenoids and frontogenetic forcing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call