Abstract

Accurate assessment of the wake effect of wind farm clusters is of great significance for the development of wind power bases, yet there is currently a deficiency in numerical simulation methods with high accuracy and simple modeling. To address this issue, a numerical simulation framework for large wind-farm wakes based on a wind farm parameterization model is proposed, and is then implemented based on the open-source CFD software OpenFOAM. In this framework, a newly proposed wind farm equivalent roughness model is adopted to parameterize wind farms and incorporated into the simulation via the wall stress model. To validate the method, the large-eddy simulation based on the actuator disk model resolving all the turbines in the wind farm is taken as a benchmark. Thirty two cases including spanwise infinite wind farms and finite wind farms with different streamwise turbine spacings, spanwise turbine spacings, wind turbine thrust coefficients, and roughness lengths of ground surface are set to analyze the sensitivity of the framework to different wind farm parameters. Results show that the proposed method predicts the velocity deficit and turbulence intensity downstream of the wind farm accurately. Compared to the classical wake superposition model, the prediction accuracy of the velocity deficit is improved by more than 30 %. Furthermore, without resolving the turbines using fine mesh, the framework shows a high potential to reduce computational costs compared with the turbine-resolved simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.