Abstract

This study examines the effects of Stokes drift on pollutant transport within the surf zone on a plane beach both numerically and experimentally. Firstly, the numerical model is described. The wave-induced current is modeled using the concept of the radiation stress. The wave propagation model is based on the wave energy conservation equation. And the advective diffusion model including the Stokes drift is used to describe the pollutant transport in the surf zone. Model validation was achieved in this case versus an analytical solution for an instantaneous point source in a uniform horizontal flow. This study also describes a laboratory experiment on dye release in the surf zone over a plane beach. We examined the final inclination angle required by a continuously released pollutant plume to reach the shoreline under both cases, and transport velocities in the alongshore and cross-shore directions were estimated by linearly fitting the location of a dye-patch front at different time. Results show that this dye patch moved shoreward with an approximate speed of 0.05 m/s (0.017 m/s) between 10 s and 40 s and 0.001 m/s (0.011 m/s) after 40 s for Case 1 (2). This model was then used to simulate pollutant transport in the surf zone on a plane beach as reproduced in the current experiment. Comparisons between our dye transport experiment and numerical results were then also conducted; the data showed that the numerical results including Stokes drift agreed more closely with experimental results than those without it. The data showed that the pollutant was generally transported obviously shoreward in addition to its expected drift along the shore. We also suggest that Stokes drift plays an important role in pollutant movement in the surf zone, especially shoreward.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call