Abstract

A computational method of reduced complexity is developed for simulating vascular hemodynamics by combination of one-dimensional (1D) wave propagation models for the blood vessels with zero-dimensional (0D) lumped models for the microcirculation. Despite the reduced dimension, current algorithms used to solve the model equations and simulate pressure and flow are rather complex, thereby limiting acceptance in the medical field. This complexity mainly arises from the methods used to combine the 1D and the 0D model equations. In this paper a numerical method is presented that no longer requires additional coupling methods and enables random combinations of 1D and 0D models using pressure as only state variable. The method is applied to a vascular tree consisting of 60 major arteries in the body and the head. Simulated results are realistic. The numerical method is stable and shows good convergence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.