Abstract

A numerical scheme is presented for modeling dynamics of incompressible elastic lipid membranes imbedded into viscous fluid. A new elliptic equation for tension in the membrane implying its local incompressibility is derived. The membranes dynamics is approximated in a semi implicit way. The Lattice Boltzmann method is used to approximate the fluid flow. Forces acting on the fluid from the lipid membrane are implemented using the immersed boundary method by Peskin. The method is illustrated by examples of axisymmetric membranes with deformations and flows typical for experiments with lipid vesicles and nanotubes where deformations and flows can be modulated by external forces applied to the membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.