Abstract
SummaryThe coupled discrete element method and lattice Boltzmann method (DEMLBM) has increasingly drawn attention of researchers in geomechanics due to its mesoscopic nature since 2000. Immersed boundary method (IBM) and immersed moving boundary (IMB) are two popular schemes for coupling fluid particle in DEMLBM. This work aims at coupling DEM and LBM using the latest IBM algorithm and investigating its accuracy, computational efficiency, and applicability. Two benchmark tests, interstitial fluid flow in an ideal packing and single particle sedimentation in viscous fluid, are carried out to demonstrate the accuracy of IBM through semi‐empirical Ergun equation, finite element method (FEM), and IMB. Then, simulations of particle migration with relatively large velocity in Poiseuille flow are utilized to address limitations of IBM in DEMLBM modeling. In addition, advantages and deficiencies of IBM are discussed and compared with IMB. It is found that the accuracy of IBM can be only guaranteed when sufficient boundary points are used and it is not suitable for geomechanical problems involving large fluid or particle velocity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical and Analytical Methods in Geomechanics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.