Abstract

Numerical procedures to predict drawbead restraining forces (DBRF) were developed based on the semi-analytical (non-finite-element) hybrid membrane/bending method. The section forces were derived by equating the work to pull sheet material through the drawbead to the work required to bend and unbend the sheet along with frictional forces on drawbead radii. As a semi-analytical method, the new approach was especially useful to analyze the effects of various constitutive parameters with less computational cost. The present model could accommodate general non-quadratic anisotropic yield function and non-linear anisotropic hardening under the plane strain condition. Several numerical sensitivity analyses for examining the effects of process parameters and material properties including the Bauschinger effect and the shape of yield surface on DBRF were presented. Finally, the DBRFs of SPCC steel sheet passing a single circular drawbead were predicted and compared with the measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.