Abstract

In this article, we propose to solve the three-dimensional time-dependent Maxwell equations in a singular axisymmetric domain with arbitrary data. Due to the axisymmetric assumption, the singular computational domain boils down to a subset of R2. However, the electromagnetic field and other vector quantities still belong to R3. Taking advantage that the domain is transformed into a two-dimensional one, by doing Fourier analysis in the third dimension, one arrives to a sequence of singular problems set in a 2D domain. The mathematical tools of such problems have been exposed in [4,19]. Here, we derive a variational method from which we propose an original finite element numerical approach to solve the problem. Numerical experiments are also shown to illustrate that the method is able to capture the singular part of the solution. This approach can also be viewed as a generalization of the Singular Complement Method to three-dimensional problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.