Abstract

In this chapter, we consider some special situations in which the three-dimensional (3D) Maxwell equations can be reformulated as two-dimensional (2D) models. More precisely, the computational domain boils down to a subset of \(\mathbb {R}^2\), with respect to a suitable system of coordinates (cylindrical, spherical, cartesian). Nevertheless, the electric and magnetic fields, and other vector quantities, still belong to \(\mathbb {R}^3\). Under suitable symmetry assumptions, one gets a single set of 2D equations or, equivalently, a single 2D variational formulation. In the general case, the electromagnetic field would be the solution to an infinite set of 2D equations, or variational formulations, obtained by Fourier analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.