Abstract

The vortex induced vibration (VIV) on a circular cylinder is investigated by the numerical solution of the Reynolds average Navier-Stokes equations. An upwind and Total Variation Diminishing (TVD) conservative scheme is used to solve the governing equations written in curvilinear coordinates and the k–ε turbulence model is used to simulate the turbulent flow in the wake of the body. The cylinder is supported by a spring and a damper and free to vibrate in the transverse and in-line directions. In previous work, numerical results for the amplitude of oscillation, vortex shedding frequency, and phase angle between lift and displacement were compared to experimental data obtained from Khalak and Williamson (1996) to validate the code for VIV simulations in the transverse direction. In the present work, results are obtained for phase angle, amplitude, frequency, and lift coefficient and compared to experimental data from Jauvtis and Williamson (2003) for an elastically mounted rigid cylinder with two degrees of freedom. Differences in the amplitude of oscillation between experimental and numerical data were observed for both direction. It seems that the fluid flow memory effect is an important aspect that should be taken in consideration on numerical simulation to reproduce the experimental results for VIV with 2DOF as pointed out by Moe and Wu [1].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call