Abstract

The hysteresis effect on the vortex induced vibration (VIV) on a circular cylinder is investigated by the numerical solution of the Reynolds average Navier-Stokes equations. An upwind and Total Variation Diminishing (TVD) conservative scheme is used to solve the governing equations written in curvilinear coordinates and the k-ε turbulence model is used to simulate the turbulent flow in the wake of the body. The cylinder is supported by a spring and a damper and free to vibrate in the transverse direction. In previous work, numerical results for the amplitude of oscillation and vortex shedding frequency were compared to experimental data obtained from the literature to validate the code for VIV simulations. In the present work, results of practical interest are presented for the power absorbed by the system, phase angle, amplitude, frequency, and lift coefficient. The numerical results indicate that the hysteresis effect is observed only when the frequency of vortex shedding gets closer to the natural frequency of the structure in air.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call